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I ntroduction

This introduction is witten for pilots (and others) who are interested in
great circle navigation and would like to know how to conpute courses,

headi ngs and other quantities of interest. These fornul ae can be progranmmed
into your cal cul ator or spreadsheet. |1'Il attenpt to include enough
infornati on that those familiar with plane trigononetry can derive
additional results if required.

It is a well known that the shortest distance between two points is a
straight |line. However anyone attenpting to fly fromLos Angeles to New York
on the straight line connecting themwould have to dig a very substanti al
tunnel first. The shortest distance, following the earth's surface lies
vertically above the aforenentioned straight Iine route. This route can be
constructed by slicing the earth in half with an imaginary plane through LAX
and JFK. This plane cuts the (assuned spherical) earth in a circular arc
connecting the two points, called a great circle. Only planes through the

center of the earth give rise to great circles. Any plane will cut a sphere
inacircle, but the resulting little circles are not the shortest distance
bet ween the points they connect. A little thought will show that Iines of

| ongitude (neridians) are great circles, but lines of latitude, with the
exception of the equator, are not.

I will assune the reader is famliar with [atitude and | ongitude as a neans
of designating |ocations on the earth's surface. For the conveni ence of
North Americans | will take North |atitudes and West |ongitudes as positive



and Sout h and East negative. The longitude is the opposite of the usual
mat hemati cal convention. True course is defined as usual, as the angle
bet ween the course line and the |l ocal neridian neasured cl ockwi se.

The first inportant fact to realise is that in general a great circle route
has a true course that varies frompoint to point. For instance the great
circle route between two points of equal (non-zero) |atitude does not foll ow
the line of latitude in an E-Wdirection, but arcs towards the pole. It is
possible to fly between two points using an unvarying true course, but in
general the resulting route differs fromthe great circle route and is
called a rhunb Iine. Unlike a great circle which encircles the earth, a
pilot flying a rhunb Iine would spiral indefinitely pol eward.

Nat ural questions are to seek the great circle distance between two
specified points and true course at points along the route. The required
spherical trigononetric fornulae are greatly sinplified if angles and

di stances are neasured in the appropriate natural units, which are both
radi ans! A radian, by definition, is the angle subtended by a circular arc
of unit length and unit radius. Since the length of a conplete circular arc
of unit radius is 2*pi, the conversion is 360 degrees equals 2*pi radians,
or:

angl e_r adi ans=(pi / 180) *angl e_degr ees
angl e_degrees=(180/ pi ) *angl e_r adi ans

Great circle distance can be |ikewi se be expressed in radians by defining
the distance to be the angle subtended by the arc at the center of the
earth. Since by definition, one nautical nile subtends one nminute (=1/60
degree) of arc, we have:

di stance_radi ans=(pi/ (180*60)) *di stance_nm
di stance_nm=((180*60)/ pi ) *di st ance_r adi ans

In all subsequent fornulae all distances and angles, such as |atitudes,

| ongi tudes and true courses will be assuned to be given in radians, greatly
simplifying them and in applications the above formul ae and their inverses
are necessary to convert back and forth between natural and practical units.
Exanpl es of this process are given |later.

Sonme great circle formul ae:
Di stance between points

The great circle distance d between two points with coordinates {lat1,|onl}
and {lat2,1on2} is given by:

d=acos(sin(latl)*sin(lat2)+cos(latl)*cos(lat2)*cos(lonl-lon2))

A mat hematically equivalent formula, which is |ess subject to rounding error
for short distances is:

d=2*asin(sqrt((sin((latl-lat2)/2))"2 +
cos(latl)*cos(lat2)*(sin((lonl-10on2)/2))"2))

Cour se between points

W obtain the initial course, tcl, (at point 1) frompoint 1 to point 2
by the following. The fornmula fails if the initial point is a pole. W can
special case this with:



IF (cos(latl) < EPS) /1 EPS a small nunber ~ nachine precision

IF (latl > 0)
tcl= pi /1 starting fromN pole
ELSE
tcl= 0 /1l starting fromS pole
ENDI F
ENDI F

I F sin(lon2-10onl)<0
tcl=acos((sin(lat2)-sin(latl)*cos(d))/(sin(d)*cos(latl)))
ELSE
tcl=2*pi -acos((sin(lat2)-sin(latl)*cos(d))/(sin(d)*cos(latl)))
ENDI F

An alternative fornmula, not requiring the pre-conputation of d, the distance
bet ween the points, is:

t cl=nod(at an2(si n(lonl-1on2)*cos(l at?2),
cos(latl)*sin(lat2)-sin(latl)*cos(lat2)*cos(lonl-lon2)), 2*pi)

Latitude of point on GC

Internediate points {lat,lon} lie on the great circle connecting points 1
and 2 when:

| at =at an((si n(latl)*cos(lat?2)*sin(lon-lon2)
-sin(lat2)*cos(latl)*sin(lon-lonl))/(cos(latl)*cos(lat2)*sin(lonl-lon2)))

(not applicable for neridians. i.e if sin(lonl-Ion2)=0)
Lat/lon given radial and distance
A point {lat,lon} is a distance d out on the tc radial frompoint 1 if:

| at =asi n(sin(latl1l)*cos(d)+cos(latl)*sin(d)*cos(tc))
I F (cos(Ilat)=0)

| on=l onl /1 endpoint a pole
ELSE
| on=rmod(| onl-asin(sin(tc)*sin(d)/cos(lat))+pi,2*pi)-pi
ENDI F
This algorithmis linmted to distances such that dlon <pi/2, i.e those that

extend around | ess than one quarter of the circunference of the earth in
| ongitude. A conpletely general, but nore conplicated algorithmis necessary
if greater distances are all owed:

I at =asin(sin(latl)*cos(d)+cos(latl)*sin(d)*cos(tc))
dl on=at an2(sin(tc)*sin(d)*cos(latl),cos(d)-sin(latl)*sin(lat))
| on=mod( | onl-dlon +pi, 2*pi )-pi

Intersecting radials
Now how to conpute the latitude, lat3, and |longitude, |on3 of an
intersection formed by the crsl13 true bearing frompoint 1 and the crs23

true bearing from point 2:

dst12=2*asi n(sqrt((sin((latl-lat2)/2))"2+



cos(latl)*cos(lat2)*sin((lonl-l1on2)/2)"2))
I F sin(lon2-10onl1)<0
crsl2=acos((sin(lat2)-sin(latl)*cos(dst12))/(sin(dstl1l2)*cos(latl)))
ELSE
crsl2=2.*pi-acos((sin(lat2)-sin(latl)*cos(dst12))/(sin(dstl2)*cos(latl)))
ENDI F
I F sin(lonl-10on2)<0
crs2l=acos((sin(latl)-sin(lat2)*cos(dst12))/(sin(dst12)*cos(lat?2)))
ELSE
crs21=2.*pi-acos((sin(latl)-sin(lat2)*cos(dst12))/(sin(dstl2)*cos(lat2)))
ENDI F
angl=nod(crsl13-crsl2+pi, 2. *pi)-p
ang2=nod(crs21-crs23+pi, 2. *pi)-p
I F (sin(angl) *si n(ang2) <=sqrt (TOL))
"no intersection exists"
ELSE
angl=abs(angl)
ang2=abs(ang2)
ang3=acos(-cos(angl) *cos(ang2) +si n(angl) *si n(ang2) *cos(dst 12))
dst 13=asi n(si n(ang2) *si n(dst 12)/ si n(ang3))
dst 23=asi n(si n(angl) *si n(dst 12)/ si n(ang3))
| at 3=asi n(si n(l at1)*cos(dst 13) +cos( | at1)*sin(dst13)*cos(crsi3))
| on3=nod( | onl-asin(sin(crsl3)*sin(dst13)/cos(lat3))+pi,2*pi)-p
ENDI F

TOL is a small nunber of order machine precision. 107-15 would be OK for
standard doubl e precision arithmetic.

Clairaut's formnul a:

This relates the latitude (lat) and true course (tc) along any great circle,
nanely: sin(tc)*cos(lat)=constant. That is, for any two points on the GC

sin(tcl)*cos(latl)=sin(tc2)*cos(lat?2)

Since at the highest latitude (latnx) reached the tc nust be 90/270, we al so
have:

| at mk=acos(abs(sin(tc)*cos(lat)))

where lat and tc are the latitude and true course at *any* point on the
great circle.

Crossing parallels:

Any given great circle (excepting one over the poles) crosses each neridian
once and only once. However, any given great circle has a maxi mum |l atitude

reached at its apex. It crosses |lower latitudes twi ce and higher |atitudes

never. Thus the algorithmfor finding the I ongitudes at which a given great
circle crosses a given parallel is alittle nore conplex.

Suppose a great circle passes through (latl,lonl) and (lat2,lon2). It
crosses the parallel lat3 at longitudes lon3_1 and | on3_2 given by:

12 = lonl-10on2

A = sin(latl)*cos(lat2)*cos(lat3)*sin(l12)

B =sin(latl)*cos(lat2)*cos(lat3)*cos(l12) - cos(latl)*sin(lat2)*cos(lat3)
C = cos(latl)*cos(lat2)*sin(lat3)*sin(l12)

lon = atan2(B, A) ( atan2(y, x) conventi on)
IF (C >sqrt (A2 + Br2))
"no crossing"



ELSE
dl on = acos(C sqrt (A*2+B"2))
| on3_1=nod( ! onl+dl on+l on+pi, 2*pi)-p
| on3_2=nod( | onl-dl on+l on+pi, 2*pi)-p
ENDI F

Cross track error

Suppose you are proceeding on a great circle route fromA to B (course
=crs_AB) and end up at D, perhaps off course. You can cal culate the course
fromAto D (crs_AD) and the distance fromA to D (dist_AD) using the
fornmul ae above. In terns of these the cross track error, XTD, (distance off
course) is given by

XTD =asi n(sin(dist_AD)*sin(crs_AD crs_AB))
(positive XTD neans right of course, negative neans |eft)

| mpl enent ati on not es:
Not es on nat hemati cal functions

Note: ”~ denotes the exponentiation operator, sqgrt is the square root
function, acos the arc-cosine (or inverse cosine) function and asin is the
arc-sine function. If asin or acos are unavail able they can be inpl emented
using the atan2 function

acos(x)=atan2(sqgrt(1-x"2), x)
acos returns a value in the range 0 <= acos <= pi
asi n(x)=atan2(x, sqrt(1-x"2))}
asin returns a value in the range -pi/2 <= asin <= pi/2

Note: Here atan2 has the conventional (C) ordering of argunments, nanely
atan2(y,x). This is not universal, Excel for instance uses atan2(x,y), but
it has asin and acos anyway. Be warned. It returns a value in the range -pi
< atan2 <= pi

Further note: if your cal cul ator/progranm ng | anguage is so inmpoverished
that only atan is available then use:

atan2(y, x) =at an(y/ x) x>0

at an2(y, x) =at an(y/ x) +pi x<0, y>=0
atan2(y, x)=pi/2 x=0, y>0
at an2(y, x) =at an(y/ x) - pi x<0, y<0
atan2(y, x)=-pi/2 x=0, y<0

atan2(0,0) is undefined and should give an error

Anot her potential inplementation problemis that the arguments of asin
and/ or acos nay, because of rounding error, exceed one in magnitude. Wth
perfect arithnetic this can't happen. You may need to use "safe" versions of
asin and acos on the lines of:

asi n_saf e(x)=asi n(max(-1, m n(x,1)))
acos_saf e(x)=acos(max(-1, m n(x,1)))

Note on the nod function. This appears to be inplenented differently in
di fferent | anguages. Mdd(y,x) is the remninder on dividing y by x and al ways
lies in the range 0 <=npd <x. The follow ng should be bull etproof:

FUNCTI ON nod(y, X)



I F y>=0

nmod=y- x*int(y/x)
ELSE

nmod=y+ x*(int(-y/x)+1)
ENDI F

Si gn Convention

As stated in the introduction, North |atitudes and West |ongitudes are
treated as positive, and South latitudes and East |ongitudes negative. It's
easier to go with the flow, but if you prefer another convention you can
change the signs in the forml ae.

Wr ked Exanpl es:

Suppose point 1 is LAX: (33deg 57min N, 118deg 24nin W
Suppose point 2 is JFK: (40deg 38min N, 73deg 47nn W

In radians LAX is

(33+57/ 60) *pi / 180=0. 592539, (118+24/60)*pi/180=2. 066470
and JFK is

(0.709186, 1. 287762)

The distance from LAX to JFK is

d=acos(sin(latl)*sin(lat2)+cos(latl)*cos(lat2)*cos(lonl-Ilon2))
=acos(sin(0.592539) *si n(0. 709186) +
cos(0.592539) *cos(0. 709186) *cos(0. 778708))
=acos(0.811790)
=0. 623585 radi ans
=0. 623585*180* 60/ pi =2144nm

The initial true course out of LAX is:
sin(-0.778708)=-0.702<0 so

tcl=acos((sin(lat2)-sin(latl)*cos(d))/(sin(d)*cos(latl)))
=acos((sin(0.709186)-si n(0.592539)*cos(0.623585))/
(sin(0.623585)*cos(0.592535))
=acos( 0. 408455)
=1. 150035 radi ans
=66 degrees

An enroute waypoi nt 100nm from LAX on the 66 degree radial (100nm al ong the
GC to JFK) has lat and | ong given by:

100nm = 100*pi / (180*60) =0. 0290888r adi ans
| at =asi n(sin(latl)*cos(d)+cos(latl)*sin(d)*cos(tc))
=asi n(si n(0.592539) *cos( 0. 0290888)
+cos (0. 592539) *si n( 0. 0290888) *cos( 1. 150035))
=asi n(0.568087)
=0. 604180r adi ans
=34degrees 37mn N

| on=l onl-asin(sin(tc)*sin(d)/cos(lat))
=2. 066470- asin(sin(1l.150035)*sin(0.0290888)/cos(0.604180))
=2. 034206 radi ans
=116 degrees 33nn W



The great circle route fromLAX to JFK crosses the 11ldegree Wneridian at a
latitude of:

(111degrees=1.937315 radi ans)

| at =at an((si n(latl)*cos(lat?2)*sin(lon-lon2)
-sin(lat2)*cos(latl)*sin(lon-lonl))/(cos(latl)*cos(lat2)*sin(lonl-lon2)))
=at an((si n(0.592539) *cos(0. 709186) *si n( 0. 649553)
-sin(0.709186) *cos(0.592539) *si n(-0.129154))/(cos(0.592539) *cos(0. 709186)

*sin(0.778708)))

=at an( 0. 737110)
=0. 635200r adi ans
=36 degrees 24mn

Cross track error

Suppose enroute fromJFK to LAX you find yourself at (D) N34:30 W.16: 30
which in radians is (0.6021386, 2.033309) (See earlier for LAX, JFK
coordi nates and course)

From LAX to D the distance is:

di st _AD=acos(si n(0.592539)*si n(0.6021386) +
cos(0.592539) *cos(0.6021386) *cos(2.066470-2.033309))
=0. 02905 radi ans (99.8665 nm

From LAX to D the course is:

crs_AD=acos((sin(0.6021386)-sin(0.592539)*cos(0.02905))/
(sin(0.02905) *cos(0.592539)))
=1.22473 radians (70.17 degrees)

At point Dthe cross track error is:

xt k= asi n(sin(0.02905) *si n(1.22473-1.15003))
=0. 00216747 radi ans
= 0.00216747*180*60/ pi =7.4512 nmright of course

Exanpl e of an intersection calc (briefly):

Let point 1 be REO (42. 60N, 117. 866W =(0. 74351, 2. 05715) r ad
Let point 2 be BKE (44. 84N, 117. 806W =(0. 782606, 2. 056103) r ad

The 51 degree (=0.890118rad) bearing from REO i ntersects with 137 degree
(=2.391101rad) fromBKE at (lat3,10on3):

Then:

dst 12=0. 039103

crs12=0.018996

crs21=3.161312

angl=0.871122

ang2=0. 770211

ang3=1. 500667

dst 13=0. 02729

dst 23=0. 029986

| at 3=0. 760473 =43. 5N

| on3=2. 027876 =116.2W at BO'!

Sonme general spherical triangle fornul ae.



A spherical triangle is one whose sides are all great circular arcs. Let the
sides have lengths a,b and c radians, and the opposite angles be A, B and C
radi ans.

I

I

| a

I

I

I

\ C|
\|

(The angle at B is not necessarily a right angle)

sin(a) sin(b) sin(c)

sin(A) sin(B) sin(Q

cos(a)=cos(b)*cos(c)+sin(b)*sin(c)*cos(A)
cos(b)=cos(c)*cos(a)+sin(c)*sin(a)*cos(B)
cos(c)=cos(a)*cos(b)+sin(a)*sin(b)*cos(C

cos(A) =-cos(B)*cos(C)+sin(B)*sin(C)*cos(a)
cos(B)=-cos(C) *cos(A) +sin(C) *sin(A) *cos(b)
cos(C)=-cos(A) *cos(B)+sin(A) *sin(B)*cos(c)

Sonme useful consequences of these are:

tan(A)=sin(B)*sin(a)/(sin(c)*cos(a)-cos(B)*cos(c)*sin(a))
tan(B)=sin(C)*sin(b)/(sin(a)*cos(b)-cos(C)*cos(a)*sin(b))
tan(C) =sin(A) *sin(c)/(sin(b)*cos(c)-cos(A) *cos(b)*sin(c))

tan(a)=sin(b)*sin(A)/(sin(C) *cos(A) +cos(b)*cos(C)*sin(A))
tan(b)=sin(c)*sin(B)/(sin(A)*cos(B)+cos(c)*cos(A) *sin(B))
tan(c)=sin(a)*sin(Q/(sin(B)*cos(C) +cos(a)*cos(B)*sin(C))

G ven *any* three of {a,b,c, A B, C the remaining sides and angl es can be
found fromthe above fornul ae.

To solve a spherical triangle (requiring 0< a,b,c, A B, C <pi
to get rid of pathol ogical cases):
Gven {A b,c}: // Two sides, included angle
a=acos(cos(b)*cos(c)+sin(b)*sin(c)*cos(A))
B=acos((cos(b) - cos(c)*cos(a))/(sin(c)*sin(a)))
C=acos((cos(c) - cos(a)*cos(b))/(sin(a)*sin(b)))

Gven {a,B,C: // Two angles, included side
A=acos(-cos(B)*cos(C) +sin(B)*sin(C)*cos(a))
b=at an2(si n(a) *si n(B) *si n(C), cos(B) +cos(C)*cos(A))
c=atan2(sin(a)*sin(B)*sin(C),cos(C) +cos(A)*cos(B))

G ven {a,b,c}: [/ Three sides
A=acos((cos(a) - cos(b)*cos(c))/(sin(b)*sin(c)))
B=acos((cos(b) - cos(c)*cos(a))/(sin(c)*sin(a)))
C=acos((cos(c) - cos(a)*cos(b))/(sin(a)*sin(b)))

Gven {A B, C: // Three angles (this has an infinity of solutions
for plane triangles and so is nunerically inaccurate for snall
spherical triangles)

del ta=( A+B+C-pi )/ 2



a=2*asi n(sqrt(sin(delta)*sin(A-delta)/(sin(B)*sin(Q)))
b=2*asi n(sqrt(sin(delta)*sin(B-delta)/(sin(C)*sin(A))))
c=2*asin(sqrt(sin(delta)*sin(Cdelta)/(sin(A)*sin(B))))

Gven {A a,b}: // Two sides, non-included angle
x=si n(A)*sin(b)/sin(a)
if (x=1) {
B=pi /2 /1 One spherical triangle exists
} else if (x <1) {
B= asin(x) and pi-asin(x) // Two triangl es exi st
} el se{
/1 No triangles exist
}
For each triangle
c=nod(2*at an2(cos((A+B)/2)*sin((a+b)/2),cos((A- B)/2)*cos((ath)/2)),2*pi)
C=nod(2*at an2(cos((a-b)/2)*cos((A+B)/2), cos((atb)/2)*sin((A+B)/2)),2*pi)

Gven {a,A B}: // Two angles, non-included side
x=sin(a)*sin(B)/sin(A
if (x=1) {
b=pi /2 /1 One spherical triangle exists
} elseif (x < 1) {
b=asi n(x) and pi-asin(x) // Two triangl es exi st
} el se{
/1 No triangles exist
}
For each triangle
c=nod(2*at an2(cos((A+B)/2)*si n((atb)/2), cos((A-B)/2)*cos((ath)/2)),2*pi)
C=npd(2*at an2(cos((a-b)/2)*cos((A+B)/2),cos((ath)/2)*sin((A+B)/2)), 2*pi)

Note that for a spherical triangle A+B+C is not pi (180 degrees) but

greater.

The difference is called the spherical excess E, defined as E=A+B+C- pi

In terns of which the surface area encl osed by a spherical triangle is given

by
Area = E*R"2

In terns of the sides:

E = 4*sqgrt(atan(tan(s/2)*tan((s-a)/2)*tan((s-b)/2)*tan((s-c)/2)))
wher e
s = (atb+c)/2

anal ogous to Heron's forrmula for a plane triangle.

Sonme ot her fornulae that nay occasionally be useful are:

sin(A/2) = sgrt((sin(s-b)*sin(s-c))/(sin(b)*sin(c)))
cos(A/2) = sqrt((sin(s)*sin(s-a))/(sin(b)*sin(c)))
tan(A'2) = sin((b-¢c)/2)/(sin((b+c)/2)*tan((B-C)/2))
= cos((b-c)/2)/(cos((b+c)/2)*tan((B+C)/2))
tan(a/2) = cos((B+C)/2)*tan((b+c)/2)/cos((B-CQ/?2)

sin((B+Q)/2)*tan((b-c)/2)/sin((B-Q/2)
tan((A-B)/2)=cot(C/ 2)*sin((a-b)/2)/sin((a+b)/2)
tan((A+B)/2)=cot (C/ 2)*cos((a-b)/2)/cos((a+b)/2)
sin(a)*cos(B)=cos(b)*sin(c)-sin(b)*cos(c)*cos(A)
cos(a)*cos(C) =sin(a)*cot(b)-sin(C) *cot(B)

In these forrmulae, A, B and C can be interchanged, provided a, b and c
change with them



ie a->b, b->c, c->a, A->B, B->C, C>A
In addition, the forrmulae hold if pi-ais witten for A,
pi-b for B and pi-c for C, etc.

ie A->pi-a, B->pi-b, C>pi-c, a->pi-A b->pi-B, c->pi-C

Rhunb Li ne Navi gation

Rhunb |ines or | oxodronmes are tracks of constant true course. Wth the
exception of neridians and the equator, they are not the sane as great
circles. They are not very useful approaching either pole, where they becone
tightly wound spirals. The formulae below fail if any point actually is a
pol e.

When two points (latl,lonl), (lat2,lon2) are connected by a rhunb Iine with
true course tc

[ on2-lonl=-tan(tc)*(log((1+sin(lat2))/cos(lat2))-

log((l+sin(latl))/cos(latl)))
=-tan(tc)*(log((1+tan(lat2/2))/(1-tan(lat2/2)))-
log((l+tan(lat1/2))/(1-tan(latl/2))))
=-tan(tc)*(log(tan(lat2/2+pi/4)/tan(latl/2+pi/4)))

(logs are "natural" logarithns to the base e.)
The true course between the points is given by:

tc= nod(atan2(lonl-1on2,log(tan(lat2/2+pi/4)/tan(latl/2+pi/4))),2*pi)
The dist, d between the points is given by:

if (abs(lat2-latl) < sqgrt(TOL)){
g=cos(l at1)
} else {
g= (lat2-latl)/log(tan(lat2/2+pi/4)/tan(latl/2+pi/4))

}
d=sqgrt((lat2-1at1)~2+ g"2*(lon2-10onl)"2)

This formula fails if the rhunb line in question crosses the 180 E/W
nmeridian. Allowing this as a possibility, the true course tc, and distance
d, for the shortest rhunb |ine connecting two points is given by:

dl on_Wenod( | on2-1on1, 2*pi)
dl on_E=nod( | onl-1on2, 2*pi)
dphi =l og(tan(l at2/2+pi/4)/tan(l at 1/ 2+pi/4))
if (abs(lat2-latl) < sqgrt(TOL)){
g=cos(l at1)
} else {
g= (lat2-latl)/dphi

}
if (dlon_W< dlon_E){// Westerly rhunb Iine is the shortest
t c=nod(at an2(-dl on_W dphi ), 2*pi)
d= sqrt(g”2*dlon_W2 + (lat2-1atl1)"2)
} el se{
t c=nod(at an2(dl on_E, dphi ), 2*pi)
d= sqrt(g”r2*dlon_E*2 + (lat2-1atl1)”2)

To find the lat/lon of a point on true course tc, distance d from
(latl,lonl) along a rhunbline (initial point cannot be a pole!):

| at = | at 1+d*cos(tc)
dphi =l og(tan(l at/2+pi/4)/tan(latl/2+pi/4))
IF (abs(lat-latl) < sqrt(TOL)){



g=cos(l atl)
} ELSE {
g= (lat-1at1)/dphi

dl on=-d*sin(tc)/q
| on=mod(| onl1+dl on+pi, 2*pi)-p

TOL is a small nunber of order machi ne precision- say le-15. The tests avoid
0/ 0 indetermn naci es on E-W cour ses.

Exanpl e:

Suppose point 1 is LAX: (33deg 57min N, 118deg 24nin W
Suppose point 2 is JFK: (40deg 38min N, 73deg 47nn W
Rhurmb |ine course fromLAX to JFK
LAX (0.592539, 2. 066470) radi ans and JFK is (0.709185, 1. 287762) radi ans

dl on_Wenod( 1. 287762- 2. 066470, 2* pi ) =5. 504478
dl on_E=nod( 2. 066470- 1. 287762, 2* pi ) =0. 778708

dphi =l og(tan(0. 709185/ 2+pi / 4) / t an( 0. 592539/ 2+pi / 4))
=0. 146801
g= (0.709185-0.592539)/0.146801 =0.794586
dlon_E < dlon_W East is shorter!
t c=nod(at an2(0. 778708, 0. 146801), 2*pi ) = 1. 384464 radi ans = 79. 32 degrees
d=sqrt (0. 794586”72*0. 7787082 + (0.709185-0.592539)"2)
= 0. 629650 radi ans = 2164.6 nm

Conpare this with the great circle course of 66 degrees and di stance of 2144
nm

Conversely, if we proceed 2164.6nm (0. 629650 radi ans) on a rhunbline course
of 79.3 degrees (1.384464 radians) starting at LAX, our final point will be
gi ven by:

| at =0. 592539 + 0.629650 * cos(1.384464)
= 0.709185

dphi =l og(tan(0. 709185/ 2+pi / 4) / t an( 0. 592539/ 2+pi / 4))
=0. 146801

g= (0.709185-0.592539)/0. 146801 =0. 794586

dl on=-0. 629650*si n( 1. 384464) /0. 794586=-0. 778708

| on=npd(2. 066470-0. 778708+pi , 2*pi ) - p
=1. 287762

which is the lat/lon of JFK- as required.

W nd Triangl es

In all formulae, all angles are in radians. Convert back and forth as in the
Great Circle section. [This is unnecessary on cal cul ators which have a
"degree node" for trig functions. Mst programm ng | anguages provide only

"radi an node". ]

angl e_r adi ans=(pi / 180) *angl e_degr ees
angl e_degrees=(180/ pi ) *angl e_r adi ans

A further conversion is required if using degrees/ m nutes/seconds:
angl e_degr ees=degr ees+(n nut es/ 60.) +(seconds/ 3600.)

degr ees=i nt (angl e_degr ees)
m nut es=i nt (60* (angl e_degr ees- degrees))



seconds=60*(60* (angl e_degr ees- degrees) - m nut es))
[ You may have a built-in HH <-> HH MM SS conversion to do this efficiently]

Let CRS=course, HD=headi ng, WD=wi nd direction (fron), TAS=True airpeed,
GS=gr oundspeed, W5=wi ndspeed.

Units of the speeds do not matter as long as they are all the sane.
(1) Unknown W nd:

WB=sqrt ( (TAS-GS)"2+ 4*TAS*GS*(sin((HD-CRS)/2))"2 )
WD=CRS + atan2( TAS*si n(HD- CRS), TAS*cos(HD-CRS)-GS) (**)
| F (WD<0) THEN WD=WD+2* pi
I F (MD>2*pi) THEN WD=WD- 2* pi
( (**) assumes atan2(y,x), reverse argunents if your inplenmentation
has atan2(x,y) )

(2) Find HD, GS

SWC=( W5/ TAS) *si n( \D- CRS)
| F (abs(SWC) >1)
"course cannot be flown-- wind too strong"
ELSE
HD=CRS+asi n( S\W)
i f (HD<0) HD=HD+2*pi
i f (HD>2*pi) HD=HD- 2*pi
GS=TAS*sqrt ( 1- SWC"2) - W5* cos( \D- CRS)
ENDI F

Not e:
The purpose of the "if (HD<O) HD=HD+2*pi; if (HD>2*pi) HD=HD- 2*pi" is
to ensure the final heading ends up in the range (0, 2*pi). Another way
to do this, with the MO function available is:

HD=MOD( HD, 2* pi )
(3) Find CRS, G5
GS=sqrt (Ws"2 + TAS"2 - 2*WS*TAS*cos(HD- VD))
WCA=at an2( W5* si n( HD- WD) , TAS- W5*cos(HD-WD) ) (%)
CRS=MOD( HD+WCA, 2* pi )
(*) WCA=asin((Ws/ GS)*sin(HD-WD)) works if the wind correction angle is |ess

than 90 degrees, which will always be the case if Wo < TAS. The listed
formula works in the general case

Approxi mate variation formnul ae.
| did a | east squares polynomal fit to the NFDC airport database.
x=latitude (N degrees) y=longitude (Wdegrees) var= variation (degrees)
var= -65.6811 + 0.99*x + 0.0128899*x"2 - 0.0000905928*x"3 + 2.87622*y -
0.0116268*x*y - 0.00000603925*x"2*y - 0.0389806*y"2 -
0. 0000403488*x*y”~2 + 0.000168556*y"3

Continental US only, 3771 points, RVS error 1 degree All within 2 degrees
except for the following airports: MX9 MB6 MXBO 3K6 02K and KOOA

(24 < x <50, 66 <y < 125)



Al aska Fit, better than 1 degree, all points:
var= 618.854 + 2.76049*x - 0.556206*x"2 + 0.00251582*x"3 - 12.7974*y +
0.408161*x*y + 0.000434097*x"2*y - 0.00602173*y" 2 -
0.00144712*x*y~2 + 0.000222521*y"3

55 points (x > 54, 130 <y < 172)

For Western Europe, fitting to the 1997 I GRF reference field:

var =10.4768771667158 -0.507385322418858*| on +0. 00753170031703826*| on"2-
1. 40596203924748e- 05*1 on*3 - 0. 535560699962353*| at +
0. 0154348808069955*| at *I on -8.07756425110592e- 05*| at *| on"2 +
0. 00976887198864442*| at ~2 -0.000259163929798334*| at ~2*| on-
3. 69056939266123e- 05*| at *3;

Here *East* lon is positive! In the range -10 < lon < 28, 36 < lat < 68 RM5
error = 0.04 degrees, max error 0.20 degrees.

I've witten software that conputes magnetic variati on anywhere on (or
above) the earth's surface, using either the WW or | GRF reference nodel s.
There are Mac , DOS and Linux executabl es avail abl e.

St andard At nosphere and Altinetry

The followi ng contains sonme formul ae concerning altinmetry and the standard
at nosphere (1976 International Standard At nosphere).

At sea-level on a standard day:

the tenperature, T_0 = 59F = 15C = 288. 15K ( C=Cel si us K=Kel vi n,
T(Kel vi n) =T( Cel si us) +273. 15)

2116.2166 | bs/ft"2
14.69595 psi = 1.0 atm

1013. 250 nB
101325.0 Pa

the pressure, PO 29.92126 "Hg

760.0 nmHg
the air density, rho_0 = 1.2250 kg/ m3 = 0.002376892 slugs/ft"3

The standard lapse rate is T r= 0.0065C/ m= .0019812C/ft bel ow t he
tropopause h_Tr= 11. 0km= 36089. 24ft

Above the tropopause, standard tenperature is T_Tr= -56.5C= 216.65K (up to
an altitude of 20km) Standard tenperature at altitude h is thus given by:

Ts=T0- Tr*h (h < h_Tr)
= T_Tr (h > h_Tr)
= 15-.0019812*h(ft) C (h < 36089. 24ft)

Variation of pressure with altitude:

p= P_0*(1-6.8755856*10"-6 h)"5.2558797  h<36, 089. 24f t
p_Tr= 0.2233609*P_0
p=p_Tr *exp( - 4. 806346* 10"- 5( h- 36089. 24)) h>36, 089. 24f t

Variation of density with altitude:



rho=rho_0*(1.- 6.8755856*10"-6 h)~4.2558797 h<36, 089. 24ft
rho_Tr=0.2970756*rho_0
rho=rho_Tr*exp(-4.806346*10"-5(h-36089.24)) h>36, 089. 24ft

Rel ati onship of pressure and indicated altitude:
alt_set in inches, heights in feet
P_alt_corr= 145442.2*(1- (alt_set/29.92126)70.190261) or

P_alt_corr= (29.92-alt_set)*1000 (sinple approximtion)
Palt=1Ind Alt + P_alt _corr

Rel ati onshi p of pressure and density altitude:

DAt=P alt+(T_s/T_r)*(1.-(T_s/T)"0.2349690)
(Standard tenp T_s and actual tenp T in Kelvin)

An approxi mate, but fairly accurate fornula is:

D At=P_Alt+118. 6*(T-T_s)
where T and T_s nay (both) be either Celsius or Kelvin

Density altitude exanple:
Let pressure altitude (P_alt) be 8000 ft, tenperature 18C.
Standard temp (T_s) is given by
T_s=15-.0019812*8000=-0. 85C = (273. 15- 0. 85) K=272. 30K
Actual tenperature (T) is
18C=(273. 15+18) K=291. 15K

Density altitude (D Alt)
(272.30/291. 15) ~0. 2349690)

8000 +(272.30/.0019812) *( 1-

8000 + 2145 = 10145ft

or approxi mately:

Density Altitude=8000 +118.6*(18+0.85)=10236ft

Rel ati onship of true and calibrated (indicated) altitude:

TA= CA + (CA-FE)* (| SADEV)/ (273+0AT)
wher e

TA= True Al'titude above sea-l|eve

FE= Field El evation of station providing the altimeter setting

CA= Calibrated altitude= Altitude indicated by altineter when set to the

altineter setting, corrected for calibration error

| SADEV= Average devi ation from standard tenperature fromstandard in the air
col um between the station and the aircraft (in C



OAT= Qutside air tenperature (at altitude)

The above is nmore precise than provided by the E6B or sinilar

Mach numbers, true vs calibrated airspeeds etc.

Mach Number (M = TAS/CS
CS = sound speed= 38.967854*sqrt (T+273.15) where T is the OAT in cel sius.
TAS is true airspeed in knots.

Because of conpressibility, the nmeasured | AT (indicated air tenperature) is
hi gher than the actual true OAT. Approximately:

| AT=0AT+K* TAS"2/ 7592

The recovery factor K, depends on installation, and is usually in the range
0.95to 1.0, but can be as low as 0.7. Tenperatures are Celsius, TAS in
knot s.

Al so:
OAT = (IAT + 273.15) / (1 + 0.2*K*M*2) - 273.15

The airspeed indicator nmeasures the differential pressure, DP, between the
pitot tube and the static port, the resulting indicated airspeed (I1AS), when
corrected for calibration and installation error is called "calibrated

ai rspeed" (CAS).

For | ow speed (M<O0.3) airplanes the true airspeed can be obtai ned from CAS
and the density altitude, DA

TAS = CAS*(rho_0/rho)~0. 5=CAS/ (1- 6. 8755856* 10"- 6 * DA) 2. 127940
( DA<36, 089. 24f 1)

Roughl y, TAS increases by 1.5% per 1000ft.

When conpressibility is taken into account, the calculation of the TAS is
nore el aborate:

DP=P_0* ((1+0. 2* (1 AS/ CS_0)~2)"3.5 -1)
Me(5%( (DP/ P+1)A(2/7) -1) )"0.5
TAS= M CS

POis is (standard) sea-level pressure, CS O is the speed of sound at
sea-level, CS is the speed of sound at altitude, and P is the pressure at
al titude.

These are given by earlier formul ae:

P_0= 29.92126 "Hg = 1013.25 nB = 2116. 2166 | bs/ft"2

P= P_0*(1-6.8755856*10"- 6* PA) 5. 2558797, pressure altitude, PA<36,089. 24ft
CS= 38.967854*sqrt (T+273.15) where T is the (static/true) OAT in Cel sius.
CS 0=38.967854*sqrt (15+273. 15) =661. 4786 knots

[ Exampl e: CAS=250 knots, PA=10000ft, |AT=2C, recovery factor=0.8
DP=29. 92126* ((1+0. 2*( 250/ 661. 4786)~2)~3.5 -1)= 3.1001 "
P=29.92126*(1- 6. 8755856*10"-6 *10000)~5. 2558797= 20.577 "

M= (5*( (3.1001/20.577 +1)~(2/7) -1) )~0.5= 0.4523 Mach
OAT=(2+273.15)/(1 + 0.2*0.8*0.452372) - 273.15= -6.72C

CS= 38.967854*sqrt (-6. 7+273. 15)=636. 08 knot s
TAS=636. 08*0. 4523=287. 7 knot s]



Sonme notes on the origins of some of the "magic" nunber constants in the
preceedi ng section:

6.8755856*10"-6 = T'/T_0, where T is the standard tenperature |apse rate
and T_O0 is the standard sea-level tenperature.

5.2558797 = My/ RT_0, where Mis the (average) nol ecul ar weight of air, g is
the acceleration of gravity and Ris the gas constant.

0.2233609 = ratio of the pressure at the tropopause to sea-level pressure.

4,806346*10"-5 = My/ RT_tr, where T tr is the tenperature at the tropopause.

4.2558797 = Mg/ RT_O -1
0.2970756 = ratio of the density at the tropopause to the density at SL
(rho_0)

145442 = T 0O/ T

38.967854 = sqgrt(gamma R T_0/M

Rel ative hunidity, dewpoint, frostpoint etc.

The relative humdity, f (as a fraction) is related to the tenperature, T
and dewpoi nt Td by:

f= exp(17.27(Td/ (Td+237.3)-T/(T+237.3)))
and to the frostpoint tenperature Tf by:
f= exp(21.87(Tf/(Tf+265.5)-T/(T+265.5)))

Tenperatures are in Celsius. Miltiply f by 100 if you want a percentage. The
above are based on an enpirical fit to the saturation vapor pressure of

wat er due to O Tetens in Zeitschrift fur Geophysik, Vol VI (1930), quoted
in "Principles of Meteorol ogical Analysis" by W J. Saucier (Dover NY 1983).

This fit is:

e s=6.11 * exp(bT/(T+a)) for the saturation vapor pressure e_s in nbar
over water a=237.3, b=17.27
over ice a=265.5, b=21.87
An alternative slightly nore accurate fit (over water) is:
e s = 6.10779 + T * (4.43652e-1 + T * (1.42894e-2 + T * (2.65064e-4 + T *
(3.03124e-6 + T * (2.03408e-8 + (6.13682e-11 * T))))))
(from Lowe, JAM (1977), 103)

Tabl es of Relative Humidity and Dewpoi nt vs Tenperature and Wt Bul b
Tenperature can be found in "Introduction to Meteorol ogy" by Franklyn Col e
(Wley NY 1975).

Inverting this to find dewpoint in ternms of tenmp and RH

Dewpoi nt Td=237.3/(1/ (I n(f)/17.27+T/ (T+237.3))-1)
Frostpoint Tf=265.5/(1/(In(f)/21. 87+T/(T+265.5))-1)

G ven the wet bulb tenperature Tw (C), the dry bulb tenperature T (C), and
the pressure, p in nbar one gets the (approximate) relative hunidity and
dewpoi nt by the follow ng:



ed= 6. 11*exp(17.27*T/ (T+237.3)) /* SVP at dry-bulb tenp

ew= 6. 11*exp(17.27*Tw ( Tw+237. 3)) /* SVP at wet-bulb tenp

wd=0. 62197*ed/ ( p- ed) /* saturation mixing ratio at T
wn=0. 62197* ew ( p- ew) /* saturation mixing ratio at Tw
w=(2500. O*ww- 1. 0046* (T-Tw) )/ (2500. 0+1.81*(T-Tw)) /* mixing ratio
f=wwd /* relative hum dity as a fraction
e= p*w (0.62197+w) /* vapor pressure (mnb)

Td=(237. 3*1 0g10(e) - 186.527)/(8.286-10g10(e)) /* the dewpoint (O

This uses the Tetens fit for the saturated vapor pressure and treat water
vapor as an ideal gas, both of which are pretty good approxi mations. If you
want better refer to the Smthsoni an Meteorol ogical Tables ( Smithsonian
Institute 1963 )

A related fornula gives the increase in effective density altitude due to
hum dity. It only addresses the reduction of air density, and not the effect
on engi ne power output:

| ncrease(ft)=0.267* RH ( T+273) *exp( 17. 3* T/ (T+237) ) *( 1- 0. 00000688* H) ~( - 5. 26)

RH (f above) is the relative hum dity expressed as a fraction, T is the
tenperature in Celsius and His the pressure altitude in feet.

Exanpl es are:
SL/ 30C/ 100% - > 565' increase in DA
10000/ 5C/ 80% -> 124' increase in DA
5000/ 40C/ 80% - > 977" increase in DA
In terms of the dewpoint, Td the fornula is:
I ncrease(ft)=0.267*(T+273) *exp(17. 3*Td/ (Td+237) ) *(1- 0. 00000688*H) *(- 5. 26)
which clearly agrees with the above when T=Td and RH=1.

Bel  any' s fornul a.

Bellany's fornula for the wind drift and (single) wind correction angle is
as follows:

Drift (nm 21500*(p2-pl)/(sin(latitude)*TAS) (p2-pl in inches)
635 *(p2-pl)/(sin(latitude)*TAS) (p2-pl in nmB)

W nd Correction Angle= 1230000*(p2-pl)/(sin(latitude)*TAS*Dist) (inches)
= 36300* (p2-pl)/(sin(latitude)*TAS*Di st) (mB)

p2-pl is the difference between the destination and departure pressures.
latitude is the average latitude on the route. TASis the true airspeed in
knots. Dist is the distance in nm

If the destination pressure is higher, the drift is to the left, and the
required WCA is to the right (and vice-versa).

Exanpl e:
SFO -> LAX 300nm at 100 knots, latitude 36 degrees. Suppose the LAX

altineter setting is 0.2" higher (better the actual pressure difference at
cruise altitude if you can get it).



Drift = 21500*0.2/(sin(36)*100)= 73nm | eft
WCA=1230000*0. 2/ (si n(36) *100*300) = 14 degrees ri ght

A discussion of this is in Barry Schiff's "Proficient Pilot I".

Unit conversions, etc.

1 knot = 1.150779 nph
1 mph = 0.868976 knot
1 knot = 1.852000 kni hr*
1 km hr= 0.539968 knot
1 nph = 1.609344 km hr*
1 knmf hr= 0.621371 nph

* = exact conversion factor

El i psoi dal paraneters:

Nane Maj or axis, a (km Fl attening (f)
WGS84 6378. 13700 1/ 298. 257223563
GRS80/ NAD83 6378. 13700 1/ 298. 257222101
WGES66 6378. 145 1/ 298. 25

GRS67/ 1 AUG8 6378. 16000 1/ 298. 2472

WES72 6378. 135 1/ 298. 26

Kr asovsky 6378. 245 1/298. 3

Cl ar ke66/ NAD27 6378. 2064 1/ 294. 9786982138

Ref erence: Coordinate Systems and Map Projections, D. H WMling (Perganon
1992) (except C arke66 !)

To convert between geocentric (radius r, geocentric latitude u) and geodetic
coordi nates (geodetic latitude v, height above the ellipsoid h):

tan(u) = tan(v)*(h*sgrt((a*cos(v))”"2+(b*sin(v))”"2) +b"2)/
(h*sqgrt((a*cos(v))"2+(b*sin(v))"2) +a"2)

rr2 = h"2 + 2*h*sqrt((a*cos(v))"2+(b*sin(v))”"2)+
(ar4- (ar4-bn4)*(sin(v))"2)/ (ar2-(ar2-b"2) *(sin(v))"2)

a and b are the sem -nmmjor axes of the ellipsoid, and b=a*(1-f), where f is
the flattening. Note that geocentric and geodetic |ongitudes are equal

Turns and pivotal altitude
In a steady turn, in no wind, with bank angle, b at an airspeed v

tan(b)= v*2/ (R g)
v=w R

where g is the acceleration due to gravity, Ris the radius of turn and wis
the rate of turn.

Pivotal altitude h_p is given by
h =v”*2/g

Wth Rin feet, v in knots, b in degrees and w in degrees/sec (inconsistent
units!), nunerical constants are introduced:



R =v~2/ (11. 23*t an( 0. 01745* b))

(Exanple) At 100 knots, with a 45 degree bank, the radius of turn is
10072/ (11. 23*tan(0.01745*45))= 891 feet.

The rate of turn wis given by:
w = 96. 7*v/R

(Exanmpl e) = 96.7*100/891= 10.9 degs/sec

The bank angle b_s for a standard rate turn is given by:
b s = 57.3*atan(v/362.1)

(Exanmpl e) for 100 knots, b_s = 57.3*atan(100/362.1) = 15.4 degrees
A useful rule-of-thumb, accurate to ~1 degree for speeds up to 250
knots, is b_s=v/7 (v in knots).

The pivotal altitude is given by:
h_p = v~r2/11. 23

(Exanmpl e) At 100 knots groundspeed the pivotal altitude is 10072/11.23 = 890
feet.

Revi si on Hi story

Version 1.24 2/10/99
Corrected sone last digit rounding errors in the rhunb |ine exanples
1.23
Additions to spherical triangle section
1.22
Course between points fornula fails if the initial point was exactly a pole.
This has to be special - cased.
1.21
Added Mach -> | AS fornul ae

1.20

Third nunerical exanple of the effect of hunidity on density
altitude corrected.
Added standard rate turn bank angl e rul e-of -thunb.

1.19

Anot her bug in the intersection section... The test for input data
where "no intersection exists", or nore precisely, when it's anmbi guous
which of the two great circle intersections is desired, was
m splaced. Wth valid data, no problem..

The C arke66/ NAD27 inverse flattening was incorrect in nmy reference book
Corrected. Thanks to Larry Lew s.

1.18

Corrected equation for dst12 in intersection calculation. It should
have been the same as for the distance between points given earlier.
A factor of 2 was dropped. The nunerical exanple used the correct
for mul a.



1.17

(1/26/98) Converted from 1962 to 1976 US Standard At nosphere (=l CAO standard
at nosphere). Made unit conversions nore accurate. (by Doug Hal uza)

1.16

(10/26/97) Corrected conversion to hh:nm ss
seconds=60*(60* (angl e_degr ees- degrees) - m nut es))

1.15
(9/11/97) Added European variation fit
1.14

(9/2/97) Added war ni ngs about argunents of asin and acos being out of range
fromrounding error.

1.13

(8/31/97) The rhumb line section was rewitten. Erroneously corrected one
formula, then changed it back! Added a numnerical exanple for the cal cul ation
of the endpoint of a rhunmb |ine. Added some nore spherical triangle

f or nul ae.

1.12

Sonmehow | dropped a line in the the 1.08 atan2 fix. Sigh! Added turn radius,
pi votal altitude fornul ae.

1.11

Made "Lat/lon given radial and distance" handle the pole endpoint case nore
el egantly.

1.10

Add "find CRS, GS" to wind triangle section
1.09

Added geodetic/ geocentric coordi nate conversion
1.08

Added an alternative nethod for calculation of course between two points,
not requiring pre-conputation of the distance between them

Changed the definition of atan2 to the ANSI standard one where it is defined
to have a range of -pi < atan2 <= pi, rather than 0 <= atan2 < 2pi. This was
a bug only if had you used the previous version to define asin in terns of
atan via atan2. No one reported it though..

Corrected sone danaged fornulae in the intersection section of the htni
ver si on.

1.07 (4/1/97)
Add addi tional spherical triangle fornulae. Correct the condition
(dlon<pi/2) for the validity of the short range forrmula in the "lat/lon

gi ven radi al and di stance" section

1. 06 (3/3/97)



Correct typo in htm version of HDE GS formula. (mnus sign) Definitions of
a and b swapped in Tejen's fit to saturation vapor pressure.

1.05 (12/17/96)

Correct test for pole in formula for conmputing lat/long of a point a given
radi al and distance: |lat=0 => cos(lat)=0

1.04 (11/11/95)

Add formula for conputing lat/long of a point a given radial and distance
valid when the di stance can exceed one quarter of the earth's circunference.

Note that atan2(0,0) should return an error
Add rhumb line formul ae and exanpl e.

Change intersection calculation to only provide result when intersection of
radi al s exists.

Conment s, corrections, suggestions to:
Ed WIlians
72347. 1516@conpuSer ve. COM

Home page http://ww. best.coml ~willians



